Susan Mockus

 SusanM. Mockus

Susan M. Mockus

  • Courses1
  • Reviews1

Biography

Johnson and Wales University - Science

Founding Director of the Clinical Knowledgebase (CKB). Strategic leader implementing innovative precision medicine.
Biotechnology
Susan
Mockus, PhD, MBA
Hartford, Connecticut Area
Market-driven strategist and cross-functional team leader merging science and business for value creation through identification of unmet needs and leveraging of internal technology assets. Focused on market needs and operations for clinical diagnostic and life science AI-driven products. Expertise and a proven leadership track-record in building and implementing strategic plans and research initiatives to maximize results in technology-rich and fast-paced environments. I'm passionate about delivering on the promise of precision medicine.



Experience

  • QIAGEN (formerly Biobase)

    Project Manager, Human Diseases

    • Responsible for multi-site operations in US, India, and Germany through management of over 100 national and international scientific curators.
    • Cross-functional team manager for the development and release of five Proteome database products.
    • Essential to business strategy planning through engagement with KOL’s and industry analysis.
    • Established best practices and operational efficiency for the curation of biological content.
    • Promoted from scientific curator to editor in less than six months.

  • The Jackson Laboratory

    Associate Director, Clinical Genomic Market Development

    Business leader responsible for establishing and driving revenue-generating strategic initiatives and innovation in the Clinical Genomics business unit for precision medicine.

    🔹 Key Accomplishment: Leveraged entrepreneurial drive to bring the organization's first genomic software informatic product from concept to a revenue-generating product line, while nurturing the non-profit mission.

    Current Responsibilities:
    🔹 Oversee operations and product life-cycle management of the Clinical Knowledgebase (JAX-CKB), including B2B domestic and international license negotiations, product roadmaps, and B2C revenue models.
    🔹 Manage digital marketing efforts, website design for UI experience, and coordinate back end business processes for account receivables and financial modeling.
    🔹 Manage rollout of e-commerce platform for JAX-CKB, including design of IT cloud PCI compliance, software life-cycle change management, marketing strategy, and customer relationship management through Marketo and Salesforce.
    🔹 Build and foster strategic relationships with internal and external KOL's to drive growth and services of the Clinical Genomics business unit.
    🔹 Identify niche markets for services and novel products through identification of unmet customer needs, monitoring of competitive offerings, and analysis of healthcare industry trends.
    🔹 Lead cross-functional collaborations across marketing, IT, computational sciences, legal, and marketing to drive successful implementation of key strategic initiatives.
    🔹 Serve on multiple steering committees to bring translational and transformative science to clinical implementation, which include, Population Genomics, Maine Cancer Genomics Initiative, Clinical Education and Continuing Education Advisory Committee, Clinical Genomics Strategy Advisor, and the Tallwood Canine Cancer Initiative.

  • N-of-One, Inc.

    Clinical Scientific Contract Curator

    • Applied subject matter expertise in pharmacology, oncology, genomics, and curation to build and maintain database content for the rollout of client molecular diagnostic and cancer treatment recommendations.
    • Conducted high-throughput literature research on cancer biomarkers and related clinical trials for next-generation sequencing (NGS) molecular diagnostics.
    • Wrote synopses of literature and data surrounding biomarker, clinical trials, and oncology drugs.

  • Garbrook Knowledge Resources

    Director of Curation, Biofuel Environmental Informatics

    • Created the direction and saw to fruition an environmental informatic product for industry, government, and academia to assess the biofuel technology industry.
    • Directed and budgeted a department of 15 scientific and business curators.
    • Established direction and prioritization of curation content and allocation of key employee talent.
    • Created marketing materials and delivered customer demonstrations for business development.
    • Leveraged new technologies for optimization of text-mining technologies, controlled vocabularies, and data retrieval methods.
    • Conducted competitive intelligence monitoring and analytics for product development and market strategy.

  • Johnson & Wales University

    Assistant Professor, Biology

    • Advisor, instructor, and mentor, of students in microbiology, environmental science, biology, anatomy, physiology, neuropsychology, nutrition, and overall STEM courses.
    • Developed novel pedagogies for multiple courses.
    • Created and facilitated active learning modules in all courses.
    • Served on multiple committees to develop and foster university and departmental goals.
    • Specifically incorporated 15 case studies in Food Microbiology in order for nutrition to understand food safety and the epidemiology of outbreaks.
    • Instructed students in environmental health science to foster a more sustainable environment in their immediate surroundings with projections to the global impact of one person.

Education

  • University of Washington

    Postdoc

    Pharmacology

  • Wake Forest University

    PhD

    Neuroscience, Pharmacology

  • Yale University - Yale School of Management

    MBA

    Business Administration and Management, Healthcare Track
    Full scholarship provided by The Jackson Laboratory

Publications

  • Reviewer - The Gale Encylopedia of Cancer volume 1

    The Gale Publishing Group

    The Gale Encyclopedia of Cancer: A Guide to Cancer and Its Treatments is a unique and invaluable source of information for anyone touched by cancer. This collection of over 450 entries provides in-depth coverage of specific cancer types, diagnostic procedures, treatments, cancer side effects, and cancer drugs.

  • Reviewer - The Gale Encylopedia of Cancer volume 1

    The Gale Publishing Group

    The Gale Encyclopedia of Cancer: A Guide to Cancer and Its Treatments is a unique and invaluable source of information for anyone touched by cancer. This collection of over 450 entries provides in-depth coverage of specific cancer types, diagnostic procedures, treatments, cancer side effects, and cancer drugs.

  • Barriers preventing the adoption of comprehensive cancer genomic profiling in the clinic.

    Taylor & Francis

    Comprehensive cancer genomic profiling provides the opportunity to expose the various molecular aberrations potentially driving tumor progression. Consequently, the identity of these genetic drivers can be utilized to match a patient to the most appropriate targeted therapy, thereby increasing the probability of improved clinical outcome. Despite its capability of informing patient care, the adoption of comprehensive cancer genomic profiling in the clinic has not been widespread. The barriers surrounding its universal acceptance are attributed to both physician and patient perspectives. Areas covered: The following report discusses the various obstacles in place, including those related to clinical utility, education, insurance coverage, and clinical trials, which can deter physicians and patients from utilizing genomic profiling for therapeutic decision-making. Expert commentary: The authors review the recent growth and potential of clinical utility studies over the last two years, provide a suggestive framework for educational support, and comment on the use of social media to enhance clinical trial recruitment.

  • Reviewer - The Gale Encylopedia of Cancer volume 1

    The Gale Publishing Group

    The Gale Encyclopedia of Cancer: A Guide to Cancer and Its Treatments is a unique and invaluable source of information for anyone touched by cancer. This collection of over 450 entries provides in-depth coverage of specific cancer types, diagnostic procedures, treatments, cancer side effects, and cancer drugs.

  • Barriers preventing the adoption of comprehensive cancer genomic profiling in the clinic.

    Taylor & Francis

    Comprehensive cancer genomic profiling provides the opportunity to expose the various molecular aberrations potentially driving tumor progression. Consequently, the identity of these genetic drivers can be utilized to match a patient to the most appropriate targeted therapy, thereby increasing the probability of improved clinical outcome. Despite its capability of informing patient care, the adoption of comprehensive cancer genomic profiling in the clinic has not been widespread. The barriers surrounding its universal acceptance are attributed to both physician and patient perspectives. Areas covered: The following report discusses the various obstacles in place, including those related to clinical utility, education, insurance coverage, and clinical trials, which can deter physicians and patients from utilizing genomic profiling for therapeutic decision-making. Expert commentary: The authors review the recent growth and potential of clinical utility studies over the last two years, provide a suggestive framework for educational support, and comment on the use of social media to enhance clinical trial recruitment.

  • Utility of the JAX Clinical Knowledgebase in capture and assessment of complex genomic cancer data

    Nature Journal of Precision Oncology

    Cancer genomic data is continually growing in complexity, necessitating improved methods for data capture and analysis. Tumors often contain multiple therapeutically relevant alterations, and co-occurring alterations may have a different influence on therapeutic response compared to if those alterations were present alone. One clinically important example of this is the existence of a resistance conferring alteration in combination with a therapeutic sensitizing mutation. The JAX Clinical Knowledgebase (JAX-CKB) (https://ckbhome.jax.org/) has incorporated the concept of the complex molecular profile, which enables association of therapeutic efficacy data with multiple genomic alterations simultaneously. This provides a mechanism for rapid and accurate assessment of complex cancer-related data, potentially aiding in streamlined clinical decision making. Using the JAX-CKB, we demonstrate the utility of associating data with complex profiles comprising ALK fusions with another variant, which have differing impacts on sensitivity to various ALK inhibitors depending on context.

  • Reviewer - The Gale Encylopedia of Cancer volume 1

    The Gale Publishing Group

    The Gale Encyclopedia of Cancer: A Guide to Cancer and Its Treatments is a unique and invaluable source of information for anyone touched by cancer. This collection of over 450 entries provides in-depth coverage of specific cancer types, diagnostic procedures, treatments, cancer side effects, and cancer drugs.

  • Barriers preventing the adoption of comprehensive cancer genomic profiling in the clinic.

    Taylor & Francis

    Comprehensive cancer genomic profiling provides the opportunity to expose the various molecular aberrations potentially driving tumor progression. Consequently, the identity of these genetic drivers can be utilized to match a patient to the most appropriate targeted therapy, thereby increasing the probability of improved clinical outcome. Despite its capability of informing patient care, the adoption of comprehensive cancer genomic profiling in the clinic has not been widespread. The barriers surrounding its universal acceptance are attributed to both physician and patient perspectives. Areas covered: The following report discusses the various obstacles in place, including those related to clinical utility, education, insurance coverage, and clinical trials, which can deter physicians and patients from utilizing genomic profiling for therapeutic decision-making. Expert commentary: The authors review the recent growth and potential of clinical utility studies over the last two years, provide a suggestive framework for educational support, and comment on the use of social media to enhance clinical trial recruitment.

  • Utility of the JAX Clinical Knowledgebase in capture and assessment of complex genomic cancer data

    Nature Journal of Precision Oncology

    Cancer genomic data is continually growing in complexity, necessitating improved methods for data capture and analysis. Tumors often contain multiple therapeutically relevant alterations, and co-occurring alterations may have a different influence on therapeutic response compared to if those alterations were present alone. One clinically important example of this is the existence of a resistance conferring alteration in combination with a therapeutic sensitizing mutation. The JAX Clinical Knowledgebase (JAX-CKB) (https://ckbhome.jax.org/) has incorporated the concept of the complex molecular profile, which enables association of therapeutic efficacy data with multiple genomic alterations simultaneously. This provides a mechanism for rapid and accurate assessment of complex cancer-related data, potentially aiding in streamlined clinical decision making. Using the JAX-CKB, we demonstrate the utility of associating data with complex profiles comprising ALK fusions with another variant, which have differing impacts on sensitivity to various ALK inhibitors depending on context.

  • Molecular Genetic Analysis of Ovarian Brenner Tumors and Associated Mucinous Epithelial Neoplasms: High Variant Concordance and Identification of Mutually Exclusive RAS Driver Mutations and MYC Amplification.

    American Journal of Pathology

    Benign ovarian Brenner tumors often are associated with mucinous cystic neoplasms, which are hypothesized to share a histogenic origin and progression, however, supporting molecular characterization is limited. Our goal was to identify molecular mechanisms linking these tumors. DNA from six Brenner tumors with paired mucinous tumors, two Brenner tumors not associated with a mucinous neoplasm, and two atypical proliferative (borderline) Brenner tumors was extracted from formalin-fixed, paraffin-embedded tumor samples and sequenced using a 358-gene next-generation sequencing assay. Variant calls were compared within tumor groups to assess somatic mutation profiles. There was high concordance of the variants between paired samples (40% to 75%; P < 0.0001). Four of the six tumor pairs showed KRAS hotspot driver mutations specifically in the mucinous tumor. In the two paired samples that lacked KRAS mutations, MYC amplification was detected in both of the mucinous and the Brenner components; MYC amplification also was detected in a third Brenner tumor. Five of the Brenner tumors had no reportable potential driver alterations. The two atypical proliferative (borderline) Brenner tumors both had RAS mutations. The high degree of coordinate variants between paired Brenner and mucinous tumors supports a shared origin or progression. Differences observed in affected genes and pathways, particularly involving RAS and MYC, may point to molecular drivers of a divergent phenotype and progression of these tumors.

  • Reviewer - The Gale Encylopedia of Cancer volume 1

    The Gale Publishing Group

    The Gale Encyclopedia of Cancer: A Guide to Cancer and Its Treatments is a unique and invaluable source of information for anyone touched by cancer. This collection of over 450 entries provides in-depth coverage of specific cancer types, diagnostic procedures, treatments, cancer side effects, and cancer drugs.

  • Barriers preventing the adoption of comprehensive cancer genomic profiling in the clinic.

    Taylor & Francis

    Comprehensive cancer genomic profiling provides the opportunity to expose the various molecular aberrations potentially driving tumor progression. Consequently, the identity of these genetic drivers can be utilized to match a patient to the most appropriate targeted therapy, thereby increasing the probability of improved clinical outcome. Despite its capability of informing patient care, the adoption of comprehensive cancer genomic profiling in the clinic has not been widespread. The barriers surrounding its universal acceptance are attributed to both physician and patient perspectives. Areas covered: The following report discusses the various obstacles in place, including those related to clinical utility, education, insurance coverage, and clinical trials, which can deter physicians and patients from utilizing genomic profiling for therapeutic decision-making. Expert commentary: The authors review the recent growth and potential of clinical utility studies over the last two years, provide a suggestive framework for educational support, and comment on the use of social media to enhance clinical trial recruitment.

  • Utility of the JAX Clinical Knowledgebase in capture and assessment of complex genomic cancer data

    Nature Journal of Precision Oncology

    Cancer genomic data is continually growing in complexity, necessitating improved methods for data capture and analysis. Tumors often contain multiple therapeutically relevant alterations, and co-occurring alterations may have a different influence on therapeutic response compared to if those alterations were present alone. One clinically important example of this is the existence of a resistance conferring alteration in combination with a therapeutic sensitizing mutation. The JAX Clinical Knowledgebase (JAX-CKB) (https://ckbhome.jax.org/) has incorporated the concept of the complex molecular profile, which enables association of therapeutic efficacy data with multiple genomic alterations simultaneously. This provides a mechanism for rapid and accurate assessment of complex cancer-related data, potentially aiding in streamlined clinical decision making. Using the JAX-CKB, we demonstrate the utility of associating data with complex profiles comprising ALK fusions with another variant, which have differing impacts on sensitivity to various ALK inhibitors depending on context.

  • Molecular Genetic Analysis of Ovarian Brenner Tumors and Associated Mucinous Epithelial Neoplasms: High Variant Concordance and Identification of Mutually Exclusive RAS Driver Mutations and MYC Amplification.

    American Journal of Pathology

    Benign ovarian Brenner tumors often are associated with mucinous cystic neoplasms, which are hypothesized to share a histogenic origin and progression, however, supporting molecular characterization is limited. Our goal was to identify molecular mechanisms linking these tumors. DNA from six Brenner tumors with paired mucinous tumors, two Brenner tumors not associated with a mucinous neoplasm, and two atypical proliferative (borderline) Brenner tumors was extracted from formalin-fixed, paraffin-embedded tumor samples and sequenced using a 358-gene next-generation sequencing assay. Variant calls were compared within tumor groups to assess somatic mutation profiles. There was high concordance of the variants between paired samples (40% to 75%; P < 0.0001). Four of the six tumor pairs showed KRAS hotspot driver mutations specifically in the mucinous tumor. In the two paired samples that lacked KRAS mutations, MYC amplification was detected in both of the mucinous and the Brenner components; MYC amplification also was detected in a third Brenner tumor. Five of the Brenner tumors had no reportable potential driver alterations. The two atypical proliferative (borderline) Brenner tumors both had RAS mutations. The high degree of coordinate variants between paired Brenner and mucinous tumors supports a shared origin or progression. Differences observed in affected genes and pathways, particularly involving RAS and MYC, may point to molecular drivers of a divergent phenotype and progression of these tumors.

  • Clinical Trials in Precision Oncology

    Clinical Chemistry

    Background: Availability of genomic information used in the management of cancer treatment has outpaced both regulatory and reimbursement efforts. Many types of clinical trials are underway to validate the utility of emerging genome-based biomarkers for diagnostic, prognostic, and predictive applications. Clinical trials are a key source of evidence required for US Food and Drug Administration approval of therapies and companion diagnostics and for establishing the acceptance criteria for reimbursement. Content: Determining the eligibility of patients for molecular-based clinical trials and the interpretation of data emerging from clinical trials is significantly hampered by 2 primary factors: the lack of specific reporting standards for biomarkers in clinical trials and the lack of adherence to official gene and variant naming standards. Clinical trial registries need specifics on the mutation required for enrollment as opposed to allowing a generic mutation entry such as, “EGFR mutation.” The use of clinical trials data in bioinformatics analysis and reporting is also gated by the lack of robust, state of the art programmatic access support. An initiative is needed to develop community standards for clinical trial descriptions and outcome reporting that are modeled after similar efforts in the genomics research community. Summary: Systematic implementation of reporting standards is needed to insure consistency and specificity of biomarker data, which will in turn enable better comparison and assessment of clinical trial outcomes across multiple studies. Reporting standards will facilitate improved identification of relevant clinical trials, aggregation and comparison of information across independent trials, and programmatic access to clinical trials databases.

  • Reviewer - The Gale Encylopedia of Cancer volume 1

    The Gale Publishing Group

    The Gale Encyclopedia of Cancer: A Guide to Cancer and Its Treatments is a unique and invaluable source of information for anyone touched by cancer. This collection of over 450 entries provides in-depth coverage of specific cancer types, diagnostic procedures, treatments, cancer side effects, and cancer drugs.

  • Barriers preventing the adoption of comprehensive cancer genomic profiling in the clinic.

    Taylor & Francis

    Comprehensive cancer genomic profiling provides the opportunity to expose the various molecular aberrations potentially driving tumor progression. Consequently, the identity of these genetic drivers can be utilized to match a patient to the most appropriate targeted therapy, thereby increasing the probability of improved clinical outcome. Despite its capability of informing patient care, the adoption of comprehensive cancer genomic profiling in the clinic has not been widespread. The barriers surrounding its universal acceptance are attributed to both physician and patient perspectives. Areas covered: The following report discusses the various obstacles in place, including those related to clinical utility, education, insurance coverage, and clinical trials, which can deter physicians and patients from utilizing genomic profiling for therapeutic decision-making. Expert commentary: The authors review the recent growth and potential of clinical utility studies over the last two years, provide a suggestive framework for educational support, and comment on the use of social media to enhance clinical trial recruitment.

  • Utility of the JAX Clinical Knowledgebase in capture and assessment of complex genomic cancer data

    Nature Journal of Precision Oncology

    Cancer genomic data is continually growing in complexity, necessitating improved methods for data capture and analysis. Tumors often contain multiple therapeutically relevant alterations, and co-occurring alterations may have a different influence on therapeutic response compared to if those alterations were present alone. One clinically important example of this is the existence of a resistance conferring alteration in combination with a therapeutic sensitizing mutation. The JAX Clinical Knowledgebase (JAX-CKB) (https://ckbhome.jax.org/) has incorporated the concept of the complex molecular profile, which enables association of therapeutic efficacy data with multiple genomic alterations simultaneously. This provides a mechanism for rapid and accurate assessment of complex cancer-related data, potentially aiding in streamlined clinical decision making. Using the JAX-CKB, we demonstrate the utility of associating data with complex profiles comprising ALK fusions with another variant, which have differing impacts on sensitivity to various ALK inhibitors depending on context.

  • Molecular Genetic Analysis of Ovarian Brenner Tumors and Associated Mucinous Epithelial Neoplasms: High Variant Concordance and Identification of Mutually Exclusive RAS Driver Mutations and MYC Amplification.

    American Journal of Pathology

    Benign ovarian Brenner tumors often are associated with mucinous cystic neoplasms, which are hypothesized to share a histogenic origin and progression, however, supporting molecular characterization is limited. Our goal was to identify molecular mechanisms linking these tumors. DNA from six Brenner tumors with paired mucinous tumors, two Brenner tumors not associated with a mucinous neoplasm, and two atypical proliferative (borderline) Brenner tumors was extracted from formalin-fixed, paraffin-embedded tumor samples and sequenced using a 358-gene next-generation sequencing assay. Variant calls were compared within tumor groups to assess somatic mutation profiles. There was high concordance of the variants between paired samples (40% to 75%; P < 0.0001). Four of the six tumor pairs showed KRAS hotspot driver mutations specifically in the mucinous tumor. In the two paired samples that lacked KRAS mutations, MYC amplification was detected in both of the mucinous and the Brenner components; MYC amplification also was detected in a third Brenner tumor. Five of the Brenner tumors had no reportable potential driver alterations. The two atypical proliferative (borderline) Brenner tumors both had RAS mutations. The high degree of coordinate variants between paired Brenner and mucinous tumors supports a shared origin or progression. Differences observed in affected genes and pathways, particularly involving RAS and MYC, may point to molecular drivers of a divergent phenotype and progression of these tumors.

  • Clinical Trials in Precision Oncology

    Clinical Chemistry

    Background: Availability of genomic information used in the management of cancer treatment has outpaced both regulatory and reimbursement efforts. Many types of clinical trials are underway to validate the utility of emerging genome-based biomarkers for diagnostic, prognostic, and predictive applications. Clinical trials are a key source of evidence required for US Food and Drug Administration approval of therapies and companion diagnostics and for establishing the acceptance criteria for reimbursement. Content: Determining the eligibility of patients for molecular-based clinical trials and the interpretation of data emerging from clinical trials is significantly hampered by 2 primary factors: the lack of specific reporting standards for biomarkers in clinical trials and the lack of adherence to official gene and variant naming standards. Clinical trial registries need specifics on the mutation required for enrollment as opposed to allowing a generic mutation entry such as, “EGFR mutation.” The use of clinical trials data in bioinformatics analysis and reporting is also gated by the lack of robust, state of the art programmatic access support. An initiative is needed to develop community standards for clinical trial descriptions and outcome reporting that are modeled after similar efforts in the genomics research community. Summary: Systematic implementation of reporting standards is needed to insure consistency and specificity of biomarker data, which will in turn enable better comparison and assessment of clinical trial outcomes across multiple studies. Reporting standards will facilitate improved identification of relevant clinical trials, aggregation and comparison of information across independent trials, and programmatic access to clinical trials databases.

  • Development and validation of the JAX Cancer Treatment Profile™ for detection of clinically actionable mutations in solid tumors

    Experimental and Molecular Pathology

    The continued development of targeted therapeutics for cancer treatment has required the concomitant development of more expansive methods for the molecular profiling of the patient’s tumor. We describe the validation of the JAX Cancer Treatment Profile™ (JAX-CTP™), a next generation sequencing (NGS)-based molecular diagnostic assay that detects actionable mutations in solid tumors to inform the selection of targeted therapeutics for cancer treatment.

  • Reviewer - The Gale Encylopedia of Cancer volume 1

    The Gale Publishing Group

    The Gale Encyclopedia of Cancer: A Guide to Cancer and Its Treatments is a unique and invaluable source of information for anyone touched by cancer. This collection of over 450 entries provides in-depth coverage of specific cancer types, diagnostic procedures, treatments, cancer side effects, and cancer drugs.

  • Barriers preventing the adoption of comprehensive cancer genomic profiling in the clinic.

    Taylor & Francis

    Comprehensive cancer genomic profiling provides the opportunity to expose the various molecular aberrations potentially driving tumor progression. Consequently, the identity of these genetic drivers can be utilized to match a patient to the most appropriate targeted therapy, thereby increasing the probability of improved clinical outcome. Despite its capability of informing patient care, the adoption of comprehensive cancer genomic profiling in the clinic has not been widespread. The barriers surrounding its universal acceptance are attributed to both physician and patient perspectives. Areas covered: The following report discusses the various obstacles in place, including those related to clinical utility, education, insurance coverage, and clinical trials, which can deter physicians and patients from utilizing genomic profiling for therapeutic decision-making. Expert commentary: The authors review the recent growth and potential of clinical utility studies over the last two years, provide a suggestive framework for educational support, and comment on the use of social media to enhance clinical trial recruitment.

  • Utility of the JAX Clinical Knowledgebase in capture and assessment of complex genomic cancer data

    Nature Journal of Precision Oncology

    Cancer genomic data is continually growing in complexity, necessitating improved methods for data capture and analysis. Tumors often contain multiple therapeutically relevant alterations, and co-occurring alterations may have a different influence on therapeutic response compared to if those alterations were present alone. One clinically important example of this is the existence of a resistance conferring alteration in combination with a therapeutic sensitizing mutation. The JAX Clinical Knowledgebase (JAX-CKB) (https://ckbhome.jax.org/) has incorporated the concept of the complex molecular profile, which enables association of therapeutic efficacy data with multiple genomic alterations simultaneously. This provides a mechanism for rapid and accurate assessment of complex cancer-related data, potentially aiding in streamlined clinical decision making. Using the JAX-CKB, we demonstrate the utility of associating data with complex profiles comprising ALK fusions with another variant, which have differing impacts on sensitivity to various ALK inhibitors depending on context.

  • Molecular Genetic Analysis of Ovarian Brenner Tumors and Associated Mucinous Epithelial Neoplasms: High Variant Concordance and Identification of Mutually Exclusive RAS Driver Mutations and MYC Amplification.

    American Journal of Pathology

    Benign ovarian Brenner tumors often are associated with mucinous cystic neoplasms, which are hypothesized to share a histogenic origin and progression, however, supporting molecular characterization is limited. Our goal was to identify molecular mechanisms linking these tumors. DNA from six Brenner tumors with paired mucinous tumors, two Brenner tumors not associated with a mucinous neoplasm, and two atypical proliferative (borderline) Brenner tumors was extracted from formalin-fixed, paraffin-embedded tumor samples and sequenced using a 358-gene next-generation sequencing assay. Variant calls were compared within tumor groups to assess somatic mutation profiles. There was high concordance of the variants between paired samples (40% to 75%; P < 0.0001). Four of the six tumor pairs showed KRAS hotspot driver mutations specifically in the mucinous tumor. In the two paired samples that lacked KRAS mutations, MYC amplification was detected in both of the mucinous and the Brenner components; MYC amplification also was detected in a third Brenner tumor. Five of the Brenner tumors had no reportable potential driver alterations. The two atypical proliferative (borderline) Brenner tumors both had RAS mutations. The high degree of coordinate variants between paired Brenner and mucinous tumors supports a shared origin or progression. Differences observed in affected genes and pathways, particularly involving RAS and MYC, may point to molecular drivers of a divergent phenotype and progression of these tumors.

  • Clinical Trials in Precision Oncology

    Clinical Chemistry

    Background: Availability of genomic information used in the management of cancer treatment has outpaced both regulatory and reimbursement efforts. Many types of clinical trials are underway to validate the utility of emerging genome-based biomarkers for diagnostic, prognostic, and predictive applications. Clinical trials are a key source of evidence required for US Food and Drug Administration approval of therapies and companion diagnostics and for establishing the acceptance criteria for reimbursement. Content: Determining the eligibility of patients for molecular-based clinical trials and the interpretation of data emerging from clinical trials is significantly hampered by 2 primary factors: the lack of specific reporting standards for biomarkers in clinical trials and the lack of adherence to official gene and variant naming standards. Clinical trial registries need specifics on the mutation required for enrollment as opposed to allowing a generic mutation entry such as, “EGFR mutation.” The use of clinical trials data in bioinformatics analysis and reporting is also gated by the lack of robust, state of the art programmatic access support. An initiative is needed to develop community standards for clinical trial descriptions and outcome reporting that are modeled after similar efforts in the genomics research community. Summary: Systematic implementation of reporting standards is needed to insure consistency and specificity of biomarker data, which will in turn enable better comparison and assessment of clinical trial outcomes across multiple studies. Reporting standards will facilitate improved identification of relevant clinical trials, aggregation and comparison of information across independent trials, and programmatic access to clinical trials databases.

  • Development and validation of the JAX Cancer Treatment Profile™ for detection of clinically actionable mutations in solid tumors

    Experimental and Molecular Pathology

    The continued development of targeted therapeutics for cancer treatment has required the concomitant development of more expansive methods for the molecular profiling of the patient’s tumor. We describe the validation of the JAX Cancer Treatment Profile™ (JAX-CTP™), a next generation sequencing (NGS)-based molecular diagnostic assay that detects actionable mutations in solid tumors to inform the selection of targeted therapeutics for cancer treatment.

  • The clinical trial landscape in oncology and connectivity of somatic mutational profiles to targeted therapies

    Human Genomics

    Precision medicine in oncology relies on rapid associations between patient-specific variations and targeted therapeutic efficacy. Due to the advancement of genomic analysis, a vast literature characterizing cancer-associated molecular aberrations and relative therapeutic relevance has been published. However, data are not uniformly reported or readily available, and accessing relevant information in a clinically acceptable time-frame is a daunting proposition, hampering connections between patients and appropriate therapeutic options. One important therapeutic avenue for oncology patients is through clinical trials. Accordingly, a global view into the availability of targeted clinical trials would provide insight into strengths and weaknesses and potentially enable research focus. However, data regarding the landscape of clinical trials in oncology is not readily available, and as a result, a comprehensive understanding of clinical trial availability is difficult.

  • Reviewer - The Gale Encylopedia of Cancer volume 1

    The Gale Publishing Group

    The Gale Encyclopedia of Cancer: A Guide to Cancer and Its Treatments is a unique and invaluable source of information for anyone touched by cancer. This collection of over 450 entries provides in-depth coverage of specific cancer types, diagnostic procedures, treatments, cancer side effects, and cancer drugs.

  • Barriers preventing the adoption of comprehensive cancer genomic profiling in the clinic.

    Taylor & Francis

    Comprehensive cancer genomic profiling provides the opportunity to expose the various molecular aberrations potentially driving tumor progression. Consequently, the identity of these genetic drivers can be utilized to match a patient to the most appropriate targeted therapy, thereby increasing the probability of improved clinical outcome. Despite its capability of informing patient care, the adoption of comprehensive cancer genomic profiling in the clinic has not been widespread. The barriers surrounding its universal acceptance are attributed to both physician and patient perspectives. Areas covered: The following report discusses the various obstacles in place, including those related to clinical utility, education, insurance coverage, and clinical trials, which can deter physicians and patients from utilizing genomic profiling for therapeutic decision-making. Expert commentary: The authors review the recent growth and potential of clinical utility studies over the last two years, provide a suggestive framework for educational support, and comment on the use of social media to enhance clinical trial recruitment.

  • Utility of the JAX Clinical Knowledgebase in capture and assessment of complex genomic cancer data

    Nature Journal of Precision Oncology

    Cancer genomic data is continually growing in complexity, necessitating improved methods for data capture and analysis. Tumors often contain multiple therapeutically relevant alterations, and co-occurring alterations may have a different influence on therapeutic response compared to if those alterations were present alone. One clinically important example of this is the existence of a resistance conferring alteration in combination with a therapeutic sensitizing mutation. The JAX Clinical Knowledgebase (JAX-CKB) (https://ckbhome.jax.org/) has incorporated the concept of the complex molecular profile, which enables association of therapeutic efficacy data with multiple genomic alterations simultaneously. This provides a mechanism for rapid and accurate assessment of complex cancer-related data, potentially aiding in streamlined clinical decision making. Using the JAX-CKB, we demonstrate the utility of associating data with complex profiles comprising ALK fusions with another variant, which have differing impacts on sensitivity to various ALK inhibitors depending on context.

  • Molecular Genetic Analysis of Ovarian Brenner Tumors and Associated Mucinous Epithelial Neoplasms: High Variant Concordance and Identification of Mutually Exclusive RAS Driver Mutations and MYC Amplification.

    American Journal of Pathology

    Benign ovarian Brenner tumors often are associated with mucinous cystic neoplasms, which are hypothesized to share a histogenic origin and progression, however, supporting molecular characterization is limited. Our goal was to identify molecular mechanisms linking these tumors. DNA from six Brenner tumors with paired mucinous tumors, two Brenner tumors not associated with a mucinous neoplasm, and two atypical proliferative (borderline) Brenner tumors was extracted from formalin-fixed, paraffin-embedded tumor samples and sequenced using a 358-gene next-generation sequencing assay. Variant calls were compared within tumor groups to assess somatic mutation profiles. There was high concordance of the variants between paired samples (40% to 75%; P < 0.0001). Four of the six tumor pairs showed KRAS hotspot driver mutations specifically in the mucinous tumor. In the two paired samples that lacked KRAS mutations, MYC amplification was detected in both of the mucinous and the Brenner components; MYC amplification also was detected in a third Brenner tumor. Five of the Brenner tumors had no reportable potential driver alterations. The two atypical proliferative (borderline) Brenner tumors both had RAS mutations. The high degree of coordinate variants between paired Brenner and mucinous tumors supports a shared origin or progression. Differences observed in affected genes and pathways, particularly involving RAS and MYC, may point to molecular drivers of a divergent phenotype and progression of these tumors.

  • Clinical Trials in Precision Oncology

    Clinical Chemistry

    Background: Availability of genomic information used in the management of cancer treatment has outpaced both regulatory and reimbursement efforts. Many types of clinical trials are underway to validate the utility of emerging genome-based biomarkers for diagnostic, prognostic, and predictive applications. Clinical trials are a key source of evidence required for US Food and Drug Administration approval of therapies and companion diagnostics and for establishing the acceptance criteria for reimbursement. Content: Determining the eligibility of patients for molecular-based clinical trials and the interpretation of data emerging from clinical trials is significantly hampered by 2 primary factors: the lack of specific reporting standards for biomarkers in clinical trials and the lack of adherence to official gene and variant naming standards. Clinical trial registries need specifics on the mutation required for enrollment as opposed to allowing a generic mutation entry such as, “EGFR mutation.” The use of clinical trials data in bioinformatics analysis and reporting is also gated by the lack of robust, state of the art programmatic access support. An initiative is needed to develop community standards for clinical trial descriptions and outcome reporting that are modeled after similar efforts in the genomics research community. Summary: Systematic implementation of reporting standards is needed to insure consistency and specificity of biomarker data, which will in turn enable better comparison and assessment of clinical trial outcomes across multiple studies. Reporting standards will facilitate improved identification of relevant clinical trials, aggregation and comparison of information across independent trials, and programmatic access to clinical trials databases.

  • Development and validation of the JAX Cancer Treatment Profile™ for detection of clinically actionable mutations in solid tumors

    Experimental and Molecular Pathology

    The continued development of targeted therapeutics for cancer treatment has required the concomitant development of more expansive methods for the molecular profiling of the patient’s tumor. We describe the validation of the JAX Cancer Treatment Profile™ (JAX-CTP™), a next generation sequencing (NGS)-based molecular diagnostic assay that detects actionable mutations in solid tumors to inform the selection of targeted therapeutics for cancer treatment.

  • The clinical trial landscape in oncology and connectivity of somatic mutational profiles to targeted therapies

    Human Genomics

    Precision medicine in oncology relies on rapid associations between patient-specific variations and targeted therapeutic efficacy. Due to the advancement of genomic analysis, a vast literature characterizing cancer-associated molecular aberrations and relative therapeutic relevance has been published. However, data are not uniformly reported or readily available, and accessing relevant information in a clinically acceptable time-frame is a daunting proposition, hampering connections between patients and appropriate therapeutic options. One important therapeutic avenue for oncology patients is through clinical trials. Accordingly, a global view into the availability of targeted clinical trials would provide insight into strengths and weaknesses and potentially enable research focus. However, data regarding the landscape of clinical trials in oncology is not readily available, and as a result, a comprehensive understanding of clinical trial availability is difficult.

  • mTOR Inhibitors in Castration-Resistant Prostate Cancer: A Systematic Review

    Targeted Oncology

    Highlights • mTOR blockade in castration resistant prostate cancer results in limited efficacy. • Poor outcomes may be a result of PI3K and androgen receptor signaling crosstalk. • Trials targeting the PI3K and androgen receptor pathways together are needed.

  • Reviewer - The Gale Encylopedia of Cancer volume 1

    The Gale Publishing Group

    The Gale Encyclopedia of Cancer: A Guide to Cancer and Its Treatments is a unique and invaluable source of information for anyone touched by cancer. This collection of over 450 entries provides in-depth coverage of specific cancer types, diagnostic procedures, treatments, cancer side effects, and cancer drugs.

  • Barriers preventing the adoption of comprehensive cancer genomic profiling in the clinic.

    Taylor & Francis

    Comprehensive cancer genomic profiling provides the opportunity to expose the various molecular aberrations potentially driving tumor progression. Consequently, the identity of these genetic drivers can be utilized to match a patient to the most appropriate targeted therapy, thereby increasing the probability of improved clinical outcome. Despite its capability of informing patient care, the adoption of comprehensive cancer genomic profiling in the clinic has not been widespread. The barriers surrounding its universal acceptance are attributed to both physician and patient perspectives. Areas covered: The following report discusses the various obstacles in place, including those related to clinical utility, education, insurance coverage, and clinical trials, which can deter physicians and patients from utilizing genomic profiling for therapeutic decision-making. Expert commentary: The authors review the recent growth and potential of clinical utility studies over the last two years, provide a suggestive framework for educational support, and comment on the use of social media to enhance clinical trial recruitment.

  • Utility of the JAX Clinical Knowledgebase in capture and assessment of complex genomic cancer data

    Nature Journal of Precision Oncology

    Cancer genomic data is continually growing in complexity, necessitating improved methods for data capture and analysis. Tumors often contain multiple therapeutically relevant alterations, and co-occurring alterations may have a different influence on therapeutic response compared to if those alterations were present alone. One clinically important example of this is the existence of a resistance conferring alteration in combination with a therapeutic sensitizing mutation. The JAX Clinical Knowledgebase (JAX-CKB) (https://ckbhome.jax.org/) has incorporated the concept of the complex molecular profile, which enables association of therapeutic efficacy data with multiple genomic alterations simultaneously. This provides a mechanism for rapid and accurate assessment of complex cancer-related data, potentially aiding in streamlined clinical decision making. Using the JAX-CKB, we demonstrate the utility of associating data with complex profiles comprising ALK fusions with another variant, which have differing impacts on sensitivity to various ALK inhibitors depending on context.

  • Molecular Genetic Analysis of Ovarian Brenner Tumors and Associated Mucinous Epithelial Neoplasms: High Variant Concordance and Identification of Mutually Exclusive RAS Driver Mutations and MYC Amplification.

    American Journal of Pathology

    Benign ovarian Brenner tumors often are associated with mucinous cystic neoplasms, which are hypothesized to share a histogenic origin and progression, however, supporting molecular characterization is limited. Our goal was to identify molecular mechanisms linking these tumors. DNA from six Brenner tumors with paired mucinous tumors, two Brenner tumors not associated with a mucinous neoplasm, and two atypical proliferative (borderline) Brenner tumors was extracted from formalin-fixed, paraffin-embedded tumor samples and sequenced using a 358-gene next-generation sequencing assay. Variant calls were compared within tumor groups to assess somatic mutation profiles. There was high concordance of the variants between paired samples (40% to 75%; P < 0.0001). Four of the six tumor pairs showed KRAS hotspot driver mutations specifically in the mucinous tumor. In the two paired samples that lacked KRAS mutations, MYC amplification was detected in both of the mucinous and the Brenner components; MYC amplification also was detected in a third Brenner tumor. Five of the Brenner tumors had no reportable potential driver alterations. The two atypical proliferative (borderline) Brenner tumors both had RAS mutations. The high degree of coordinate variants between paired Brenner and mucinous tumors supports a shared origin or progression. Differences observed in affected genes and pathways, particularly involving RAS and MYC, may point to molecular drivers of a divergent phenotype and progression of these tumors.

  • Clinical Trials in Precision Oncology

    Clinical Chemistry

    Background: Availability of genomic information used in the management of cancer treatment has outpaced both regulatory and reimbursement efforts. Many types of clinical trials are underway to validate the utility of emerging genome-based biomarkers for diagnostic, prognostic, and predictive applications. Clinical trials are a key source of evidence required for US Food and Drug Administration approval of therapies and companion diagnostics and for establishing the acceptance criteria for reimbursement. Content: Determining the eligibility of patients for molecular-based clinical trials and the interpretation of data emerging from clinical trials is significantly hampered by 2 primary factors: the lack of specific reporting standards for biomarkers in clinical trials and the lack of adherence to official gene and variant naming standards. Clinical trial registries need specifics on the mutation required for enrollment as opposed to allowing a generic mutation entry such as, “EGFR mutation.” The use of clinical trials data in bioinformatics analysis and reporting is also gated by the lack of robust, state of the art programmatic access support. An initiative is needed to develop community standards for clinical trial descriptions and outcome reporting that are modeled after similar efforts in the genomics research community. Summary: Systematic implementation of reporting standards is needed to insure consistency and specificity of biomarker data, which will in turn enable better comparison and assessment of clinical trial outcomes across multiple studies. Reporting standards will facilitate improved identification of relevant clinical trials, aggregation and comparison of information across independent trials, and programmatic access to clinical trials databases.

  • Development and validation of the JAX Cancer Treatment Profile™ for detection of clinically actionable mutations in solid tumors

    Experimental and Molecular Pathology

    The continued development of targeted therapeutics for cancer treatment has required the concomitant development of more expansive methods for the molecular profiling of the patient’s tumor. We describe the validation of the JAX Cancer Treatment Profile™ (JAX-CTP™), a next generation sequencing (NGS)-based molecular diagnostic assay that detects actionable mutations in solid tumors to inform the selection of targeted therapeutics for cancer treatment.

  • The clinical trial landscape in oncology and connectivity of somatic mutational profiles to targeted therapies

    Human Genomics

    Precision medicine in oncology relies on rapid associations between patient-specific variations and targeted therapeutic efficacy. Due to the advancement of genomic analysis, a vast literature characterizing cancer-associated molecular aberrations and relative therapeutic relevance has been published. However, data are not uniformly reported or readily available, and accessing relevant information in a clinically acceptable time-frame is a daunting proposition, hampering connections between patients and appropriate therapeutic options. One important therapeutic avenue for oncology patients is through clinical trials. Accordingly, a global view into the availability of targeted clinical trials would provide insight into strengths and weaknesses and potentially enable research focus. However, data regarding the landscape of clinical trials in oncology is not readily available, and as a result, a comprehensive understanding of clinical trial availability is difficult.

  • mTOR Inhibitors in Castration-Resistant Prostate Cancer: A Systematic Review

    Targeted Oncology

    Highlights • mTOR blockade in castration resistant prostate cancer results in limited efficacy. • Poor outcomes may be a result of PI3K and androgen receptor signaling crosstalk. • Trials targeting the PI3K and androgen receptor pathways together are needed.

  • Somatic gene mutation analysis of triple negative breast cancers

    Elsevier: The Breast

    Highlights • Current therapy for triple negative breast cancer (TNBC) is limited. • Next generation sequencing assays can detect clinically actionable genetic alterations in TNBC. • MYC amplification is common in TNBC. • Utilizing clinical trial databases can increase clinical trial eligibility for TNBC patients.