Robert Morris is a/an Instructor in the Ventura County Community College District department at Ventura County Community College District
University of Toronto St. George Campus - Chemistry
Chemical Communications RSC
Chemical Communications RSC
Organometallics ACS
Chemical Communications RSC
Organometallics ACS
Dalton Transactions
Chemical Communications RSC
Organometallics ACS
Dalton Transactions
Inorganic Chemistry
graduate work
Chemical Communications RSC
Organometallics ACS
Dalton Transactions
Inorganic Chemistry
graduate work
Organometallics
Complexes of the type mer,trans-[Fe(P-N-P′)(CO)2Br]BF4 are known to be precatalysts for the asymmetric direct hydrogenation of ketones and imines. Employing related ligand scaffolds, we successfully generated and tested the series of three new precatalysts [Fe(PCy2CH2CH═NCH(R)CH2PPh2)(CO)2Br]BF4 with chirality derived from (S)-amino alcohols with phenyl, benzyl, and isopropyl substituents (R), yielding fairly active and selective systems. For the reduction of acetophenone to (S)-1-phenylethanol turnover frequencies up to 920 h–1 and up to 74% enantiomeric excess at 50 °C and 5–25 atm of H2 were obtained. We found, however, that placing these large groups R next to nitrogen was found to be deleterious to catalytic activity. Extending the scope of the ligand structure, we then developed a series of six P-N-P and five P-NH-P′ systems starting with o-diphenylphosphinobenzaldehyde and the phosphine-amines PPh2CHR1CHR2NH2 (R1 = H, Ph, CH2Ph, iPr with R2 = H or R1 = Me, Ph with R2 = Ph) as well as their corresponding [Fe(P-N-P′)(NCMe)3][BF4]2 and [Fe(P-NH-P′)(NCMe)3][BF4]2 complexes, which were not catalytically active. Finally, we made the new achiral iron complex mer,cis-Fe(PPh2(o-C6H4)CHNCH2CH2PPh2)(CO)Br2, which was active for the direct hydrogenation of acetophenone, achieving turnover frequencies of 800 h–1 at 50 °C and 25 atm of H2.
Chemical Communications RSC
Organometallics ACS
Dalton Transactions
Inorganic Chemistry
graduate work
Organometallics
Complexes of the type mer,trans-[Fe(P-N-P′)(CO)2Br]BF4 are known to be precatalysts for the asymmetric direct hydrogenation of ketones and imines. Employing related ligand scaffolds, we successfully generated and tested the series of three new precatalysts [Fe(PCy2CH2CH═NCH(R)CH2PPh2)(CO)2Br]BF4 with chirality derived from (S)-amino alcohols with phenyl, benzyl, and isopropyl substituents (R), yielding fairly active and selective systems. For the reduction of acetophenone to (S)-1-phenylethanol turnover frequencies up to 920 h–1 and up to 74% enantiomeric excess at 50 °C and 5–25 atm of H2 were obtained. We found, however, that placing these large groups R next to nitrogen was found to be deleterious to catalytic activity. Extending the scope of the ligand structure, we then developed a series of six P-N-P and five P-NH-P′ systems starting with o-diphenylphosphinobenzaldehyde and the phosphine-amines PPh2CHR1CHR2NH2 (R1 = H, Ph, CH2Ph, iPr with R2 = H or R1 = Me, Ph with R2 = Ph) as well as their corresponding [Fe(P-N-P′)(NCMe)3][BF4]2 and [Fe(P-NH-P′)(NCMe)3][BF4]2 complexes, which were not catalytically active. Finally, we made the new achiral iron complex mer,cis-Fe(PPh2(o-C6H4)CHNCH2CH2PPh2)(CO)Br2, which was active for the direct hydrogenation of acetophenone, achieving turnover frequencies of 800 h–1 at 50 °C and 25 atm of H2.
Organometallics ACS
Chemical Communications RSC
Organometallics ACS
Dalton Transactions
Inorganic Chemistry
graduate work
Organometallics
Complexes of the type mer,trans-[Fe(P-N-P′)(CO)2Br]BF4 are known to be precatalysts for the asymmetric direct hydrogenation of ketones and imines. Employing related ligand scaffolds, we successfully generated and tested the series of three new precatalysts [Fe(PCy2CH2CH═NCH(R)CH2PPh2)(CO)2Br]BF4 with chirality derived from (S)-amino alcohols with phenyl, benzyl, and isopropyl substituents (R), yielding fairly active and selective systems. For the reduction of acetophenone to (S)-1-phenylethanol turnover frequencies up to 920 h–1 and up to 74% enantiomeric excess at 50 °C and 5–25 atm of H2 were obtained. We found, however, that placing these large groups R next to nitrogen was found to be deleterious to catalytic activity. Extending the scope of the ligand structure, we then developed a series of six P-N-P and five P-NH-P′ systems starting with o-diphenylphosphinobenzaldehyde and the phosphine-amines PPh2CHR1CHR2NH2 (R1 = H, Ph, CH2Ph, iPr with R2 = H or R1 = Me, Ph with R2 = Ph) as well as their corresponding [Fe(P-N-P′)(NCMe)3][BF4]2 and [Fe(P-NH-P′)(NCMe)3][BF4]2 complexes, which were not catalytically active. Finally, we made the new achiral iron complex mer,cis-Fe(PPh2(o-C6H4)CHNCH2CH2PPh2)(CO)Br2, which was active for the direct hydrogenation of acetophenone, achieving turnover frequencies of 800 h–1 at 50 °C and 25 atm of H2.
Organometallics ACS
Journal of Organometallic Chemistry
graduate work
Chemical Communications RSC
Organometallics ACS
Dalton Transactions
Inorganic Chemistry
graduate work
Organometallics
Complexes of the type mer,trans-[Fe(P-N-P′)(CO)2Br]BF4 are known to be precatalysts for the asymmetric direct hydrogenation of ketones and imines. Employing related ligand scaffolds, we successfully generated and tested the series of three new precatalysts [Fe(PCy2CH2CH═NCH(R)CH2PPh2)(CO)2Br]BF4 with chirality derived from (S)-amino alcohols with phenyl, benzyl, and isopropyl substituents (R), yielding fairly active and selective systems. For the reduction of acetophenone to (S)-1-phenylethanol turnover frequencies up to 920 h–1 and up to 74% enantiomeric excess at 50 °C and 5–25 atm of H2 were obtained. We found, however, that placing these large groups R next to nitrogen was found to be deleterious to catalytic activity. Extending the scope of the ligand structure, we then developed a series of six P-N-P and five P-NH-P′ systems starting with o-diphenylphosphinobenzaldehyde and the phosphine-amines PPh2CHR1CHR2NH2 (R1 = H, Ph, CH2Ph, iPr with R2 = H or R1 = Me, Ph with R2 = Ph) as well as their corresponding [Fe(P-N-P′)(NCMe)3][BF4]2 and [Fe(P-NH-P′)(NCMe)3][BF4]2 complexes, which were not catalytically active. Finally, we made the new achiral iron complex mer,cis-Fe(PPh2(o-C6H4)CHNCH2CH2PPh2)(CO)Br2, which was active for the direct hydrogenation of acetophenone, achieving turnover frequencies of 800 h–1 at 50 °C and 25 atm of H2.
Organometallics ACS
Journal of Organometallic Chemistry
graduate work
Inorganic Chemistry
Chemical Communications RSC
Organometallics ACS
Dalton Transactions
Inorganic Chemistry
graduate work
Organometallics
Complexes of the type mer,trans-[Fe(P-N-P′)(CO)2Br]BF4 are known to be precatalysts for the asymmetric direct hydrogenation of ketones and imines. Employing related ligand scaffolds, we successfully generated and tested the series of three new precatalysts [Fe(PCy2CH2CH═NCH(R)CH2PPh2)(CO)2Br]BF4 with chirality derived from (S)-amino alcohols with phenyl, benzyl, and isopropyl substituents (R), yielding fairly active and selective systems. For the reduction of acetophenone to (S)-1-phenylethanol turnover frequencies up to 920 h–1 and up to 74% enantiomeric excess at 50 °C and 5–25 atm of H2 were obtained. We found, however, that placing these large groups R next to nitrogen was found to be deleterious to catalytic activity. Extending the scope of the ligand structure, we then developed a series of six P-N-P and five P-NH-P′ systems starting with o-diphenylphosphinobenzaldehyde and the phosphine-amines PPh2CHR1CHR2NH2 (R1 = H, Ph, CH2Ph, iPr with R2 = H or R1 = Me, Ph with R2 = Ph) as well as their corresponding [Fe(P-N-P′)(NCMe)3][BF4]2 and [Fe(P-NH-P′)(NCMe)3][BF4]2 complexes, which were not catalytically active. Finally, we made the new achiral iron complex mer,cis-Fe(PPh2(o-C6H4)CHNCH2CH2PPh2)(CO)Br2, which was active for the direct hydrogenation of acetophenone, achieving turnover frequencies of 800 h–1 at 50 °C and 25 atm of H2.
Organometallics ACS
Journal of Organometallic Chemistry
graduate work
Inorganic Chemistry
Catalysis Science & Technology
Chemical Communications RSC
Organometallics ACS
Dalton Transactions
Inorganic Chemistry
graduate work
Organometallics
Complexes of the type mer,trans-[Fe(P-N-P′)(CO)2Br]BF4 are known to be precatalysts for the asymmetric direct hydrogenation of ketones and imines. Employing related ligand scaffolds, we successfully generated and tested the series of three new precatalysts [Fe(PCy2CH2CH═NCH(R)CH2PPh2)(CO)2Br]BF4 with chirality derived from (S)-amino alcohols with phenyl, benzyl, and isopropyl substituents (R), yielding fairly active and selective systems. For the reduction of acetophenone to (S)-1-phenylethanol turnover frequencies up to 920 h–1 and up to 74% enantiomeric excess at 50 °C and 5–25 atm of H2 were obtained. We found, however, that placing these large groups R next to nitrogen was found to be deleterious to catalytic activity. Extending the scope of the ligand structure, we then developed a series of six P-N-P and five P-NH-P′ systems starting with o-diphenylphosphinobenzaldehyde and the phosphine-amines PPh2CHR1CHR2NH2 (R1 = H, Ph, CH2Ph, iPr with R2 = H or R1 = Me, Ph with R2 = Ph) as well as their corresponding [Fe(P-N-P′)(NCMe)3][BF4]2 and [Fe(P-NH-P′)(NCMe)3][BF4]2 complexes, which were not catalytically active. Finally, we made the new achiral iron complex mer,cis-Fe(PPh2(o-C6H4)CHNCH2CH2PPh2)(CO)Br2, which was active for the direct hydrogenation of acetophenone, achieving turnover frequencies of 800 h–1 at 50 °C and 25 atm of H2.
Organometallics ACS
Journal of Organometallic Chemistry
graduate work
Inorganic Chemistry
Catalysis Science & Technology
Journal of the American Chemical Society
graduate work
Chemical Communications RSC
Organometallics ACS
Dalton Transactions
Inorganic Chemistry
graduate work
Organometallics
Complexes of the type mer,trans-[Fe(P-N-P′)(CO)2Br]BF4 are known to be precatalysts for the asymmetric direct hydrogenation of ketones and imines. Employing related ligand scaffolds, we successfully generated and tested the series of three new precatalysts [Fe(PCy2CH2CH═NCH(R)CH2PPh2)(CO)2Br]BF4 with chirality derived from (S)-amino alcohols with phenyl, benzyl, and isopropyl substituents (R), yielding fairly active and selective systems. For the reduction of acetophenone to (S)-1-phenylethanol turnover frequencies up to 920 h–1 and up to 74% enantiomeric excess at 50 °C and 5–25 atm of H2 were obtained. We found, however, that placing these large groups R next to nitrogen was found to be deleterious to catalytic activity. Extending the scope of the ligand structure, we then developed a series of six P-N-P and five P-NH-P′ systems starting with o-diphenylphosphinobenzaldehyde and the phosphine-amines PPh2CHR1CHR2NH2 (R1 = H, Ph, CH2Ph, iPr with R2 = H or R1 = Me, Ph with R2 = Ph) as well as their corresponding [Fe(P-N-P′)(NCMe)3][BF4]2 and [Fe(P-NH-P′)(NCMe)3][BF4]2 complexes, which were not catalytically active. Finally, we made the new achiral iron complex mer,cis-Fe(PPh2(o-C6H4)CHNCH2CH2PPh2)(CO)Br2, which was active for the direct hydrogenation of acetophenone, achieving turnover frequencies of 800 h–1 at 50 °C and 25 atm of H2.
Organometallics ACS
Journal of Organometallic Chemistry
graduate work
Inorganic Chemistry
Catalysis Science & Technology
Journal of the American Chemical Society
graduate work
Organometallics ACS
Chemical Communications RSC
Organometallics ACS
Dalton Transactions
Inorganic Chemistry
graduate work
Organometallics
Complexes of the type mer,trans-[Fe(P-N-P′)(CO)2Br]BF4 are known to be precatalysts for the asymmetric direct hydrogenation of ketones and imines. Employing related ligand scaffolds, we successfully generated and tested the series of three new precatalysts [Fe(PCy2CH2CH═NCH(R)CH2PPh2)(CO)2Br]BF4 with chirality derived from (S)-amino alcohols with phenyl, benzyl, and isopropyl substituents (R), yielding fairly active and selective systems. For the reduction of acetophenone to (S)-1-phenylethanol turnover frequencies up to 920 h–1 and up to 74% enantiomeric excess at 50 °C and 5–25 atm of H2 were obtained. We found, however, that placing these large groups R next to nitrogen was found to be deleterious to catalytic activity. Extending the scope of the ligand structure, we then developed a series of six P-N-P and five P-NH-P′ systems starting with o-diphenylphosphinobenzaldehyde and the phosphine-amines PPh2CHR1CHR2NH2 (R1 = H, Ph, CH2Ph, iPr with R2 = H or R1 = Me, Ph with R2 = Ph) as well as their corresponding [Fe(P-N-P′)(NCMe)3][BF4]2 and [Fe(P-NH-P′)(NCMe)3][BF4]2 complexes, which were not catalytically active. Finally, we made the new achiral iron complex mer,cis-Fe(PPh2(o-C6H4)CHNCH2CH2PPh2)(CO)Br2, which was active for the direct hydrogenation of acetophenone, achieving turnover frequencies of 800 h–1 at 50 °C and 25 atm of H2.
Organometallics ACS
Journal of Organometallic Chemistry
graduate work
Inorganic Chemistry
Catalysis Science & Technology
Journal of the American Chemical Society
graduate work
Organometallics ACS
Organometallics ACS
Organometallics ACS
Chemical Communications RSC
Organometallics ACS
Dalton Transactions
Inorganic Chemistry
graduate work
Organometallics
Complexes of the type mer,trans-[Fe(P-N-P′)(CO)2Br]BF4 are known to be precatalysts for the asymmetric direct hydrogenation of ketones and imines. Employing related ligand scaffolds, we successfully generated and tested the series of three new precatalysts [Fe(PCy2CH2CH═NCH(R)CH2PPh2)(CO)2Br]BF4 with chirality derived from (S)-amino alcohols with phenyl, benzyl, and isopropyl substituents (R), yielding fairly active and selective systems. For the reduction of acetophenone to (S)-1-phenylethanol turnover frequencies up to 920 h–1 and up to 74% enantiomeric excess at 50 °C and 5–25 atm of H2 were obtained. We found, however, that placing these large groups R next to nitrogen was found to be deleterious to catalytic activity. Extending the scope of the ligand structure, we then developed a series of six P-N-P and five P-NH-P′ systems starting with o-diphenylphosphinobenzaldehyde and the phosphine-amines PPh2CHR1CHR2NH2 (R1 = H, Ph, CH2Ph, iPr with R2 = H or R1 = Me, Ph with R2 = Ph) as well as their corresponding [Fe(P-N-P′)(NCMe)3][BF4]2 and [Fe(P-NH-P′)(NCMe)3][BF4]2 complexes, which were not catalytically active. Finally, we made the new achiral iron complex mer,cis-Fe(PPh2(o-C6H4)CHNCH2CH2PPh2)(CO)Br2, which was active for the direct hydrogenation of acetophenone, achieving turnover frequencies of 800 h–1 at 50 °C and 25 atm of H2.
Organometallics ACS
Journal of Organometallic Chemistry
graduate work
Inorganic Chemistry
Catalysis Science & Technology
Journal of the American Chemical Society
graduate work
Organometallics ACS
Organometallics ACS
Organometallics ACS
ACS Catalysis
Chemical Communications RSC
Organometallics ACS
Dalton Transactions
Inorganic Chemistry
graduate work
Organometallics
Complexes of the type mer,trans-[Fe(P-N-P′)(CO)2Br]BF4 are known to be precatalysts for the asymmetric direct hydrogenation of ketones and imines. Employing related ligand scaffolds, we successfully generated and tested the series of three new precatalysts [Fe(PCy2CH2CH═NCH(R)CH2PPh2)(CO)2Br]BF4 with chirality derived from (S)-amino alcohols with phenyl, benzyl, and isopropyl substituents (R), yielding fairly active and selective systems. For the reduction of acetophenone to (S)-1-phenylethanol turnover frequencies up to 920 h–1 and up to 74% enantiomeric excess at 50 °C and 5–25 atm of H2 were obtained. We found, however, that placing these large groups R next to nitrogen was found to be deleterious to catalytic activity. Extending the scope of the ligand structure, we then developed a series of six P-N-P and five P-NH-P′ systems starting with o-diphenylphosphinobenzaldehyde and the phosphine-amines PPh2CHR1CHR2NH2 (R1 = H, Ph, CH2Ph, iPr with R2 = H or R1 = Me, Ph with R2 = Ph) as well as their corresponding [Fe(P-N-P′)(NCMe)3][BF4]2 and [Fe(P-NH-P′)(NCMe)3][BF4]2 complexes, which were not catalytically active. Finally, we made the new achiral iron complex mer,cis-Fe(PPh2(o-C6H4)CHNCH2CH2PPh2)(CO)Br2, which was active for the direct hydrogenation of acetophenone, achieving turnover frequencies of 800 h–1 at 50 °C and 25 atm of H2.
Organometallics ACS
Journal of Organometallic Chemistry
graduate work
Inorganic Chemistry
Catalysis Science & Technology
Journal of the American Chemical Society
graduate work
Organometallics ACS
Organometallics ACS
Organometallics ACS
ACS Catalysis
Dalton Transactions
doi: 10.1039/C4DT02799J.
Chemical Communications RSC
Organometallics ACS
Dalton Transactions
Inorganic Chemistry
graduate work
Organometallics
Complexes of the type mer,trans-[Fe(P-N-P′)(CO)2Br]BF4 are known to be precatalysts for the asymmetric direct hydrogenation of ketones and imines. Employing related ligand scaffolds, we successfully generated and tested the series of three new precatalysts [Fe(PCy2CH2CH═NCH(R)CH2PPh2)(CO)2Br]BF4 with chirality derived from (S)-amino alcohols with phenyl, benzyl, and isopropyl substituents (R), yielding fairly active and selective systems. For the reduction of acetophenone to (S)-1-phenylethanol turnover frequencies up to 920 h–1 and up to 74% enantiomeric excess at 50 °C and 5–25 atm of H2 were obtained. We found, however, that placing these large groups R next to nitrogen was found to be deleterious to catalytic activity. Extending the scope of the ligand structure, we then developed a series of six P-N-P and five P-NH-P′ systems starting with o-diphenylphosphinobenzaldehyde and the phosphine-amines PPh2CHR1CHR2NH2 (R1 = H, Ph, CH2Ph, iPr with R2 = H or R1 = Me, Ph with R2 = Ph) as well as their corresponding [Fe(P-N-P′)(NCMe)3][BF4]2 and [Fe(P-NH-P′)(NCMe)3][BF4]2 complexes, which were not catalytically active. Finally, we made the new achiral iron complex mer,cis-Fe(PPh2(o-C6H4)CHNCH2CH2PPh2)(CO)Br2, which was active for the direct hydrogenation of acetophenone, achieving turnover frequencies of 800 h–1 at 50 °C and 25 atm of H2.
Organometallics ACS
Journal of Organometallic Chemistry
graduate work
Inorganic Chemistry
Catalysis Science & Technology
Journal of the American Chemical Society
graduate work
Organometallics ACS
Organometallics ACS
Organometallics ACS
ACS Catalysis
Dalton Transactions
doi: 10.1039/C4DT02799J.
Chemistry - A European Journal
Chemical Communications RSC
Organometallics ACS
Dalton Transactions
Inorganic Chemistry
graduate work
Organometallics
Complexes of the type mer,trans-[Fe(P-N-P′)(CO)2Br]BF4 are known to be precatalysts for the asymmetric direct hydrogenation of ketones and imines. Employing related ligand scaffolds, we successfully generated and tested the series of three new precatalysts [Fe(PCy2CH2CH═NCH(R)CH2PPh2)(CO)2Br]BF4 with chirality derived from (S)-amino alcohols with phenyl, benzyl, and isopropyl substituents (R), yielding fairly active and selective systems. For the reduction of acetophenone to (S)-1-phenylethanol turnover frequencies up to 920 h–1 and up to 74% enantiomeric excess at 50 °C and 5–25 atm of H2 were obtained. We found, however, that placing these large groups R next to nitrogen was found to be deleterious to catalytic activity. Extending the scope of the ligand structure, we then developed a series of six P-N-P and five P-NH-P′ systems starting with o-diphenylphosphinobenzaldehyde and the phosphine-amines PPh2CHR1CHR2NH2 (R1 = H, Ph, CH2Ph, iPr with R2 = H or R1 = Me, Ph with R2 = Ph) as well as their corresponding [Fe(P-N-P′)(NCMe)3][BF4]2 and [Fe(P-NH-P′)(NCMe)3][BF4]2 complexes, which were not catalytically active. Finally, we made the new achiral iron complex mer,cis-Fe(PPh2(o-C6H4)CHNCH2CH2PPh2)(CO)Br2, which was active for the direct hydrogenation of acetophenone, achieving turnover frequencies of 800 h–1 at 50 °C and 25 atm of H2.
Organometallics ACS
Journal of Organometallic Chemistry
graduate work
Inorganic Chemistry
Catalysis Science & Technology
Journal of the American Chemical Society
graduate work
Organometallics ACS
Organometallics ACS
Organometallics ACS
ACS Catalysis
Dalton Transactions
doi: 10.1039/C4DT02799J.
Chemistry - A European Journal
Organometallics
Chemical Communications RSC
Organometallics ACS
Dalton Transactions
Inorganic Chemistry
graduate work
Organometallics
Complexes of the type mer,trans-[Fe(P-N-P′)(CO)2Br]BF4 are known to be precatalysts for the asymmetric direct hydrogenation of ketones and imines. Employing related ligand scaffolds, we successfully generated and tested the series of three new precatalysts [Fe(PCy2CH2CH═NCH(R)CH2PPh2)(CO)2Br]BF4 with chirality derived from (S)-amino alcohols with phenyl, benzyl, and isopropyl substituents (R), yielding fairly active and selective systems. For the reduction of acetophenone to (S)-1-phenylethanol turnover frequencies up to 920 h–1 and up to 74% enantiomeric excess at 50 °C and 5–25 atm of H2 were obtained. We found, however, that placing these large groups R next to nitrogen was found to be deleterious to catalytic activity. Extending the scope of the ligand structure, we then developed a series of six P-N-P and five P-NH-P′ systems starting with o-diphenylphosphinobenzaldehyde and the phosphine-amines PPh2CHR1CHR2NH2 (R1 = H, Ph, CH2Ph, iPr with R2 = H or R1 = Me, Ph with R2 = Ph) as well as their corresponding [Fe(P-N-P′)(NCMe)3][BF4]2 and [Fe(P-NH-P′)(NCMe)3][BF4]2 complexes, which were not catalytically active. Finally, we made the new achiral iron complex mer,cis-Fe(PPh2(o-C6H4)CHNCH2CH2PPh2)(CO)Br2, which was active for the direct hydrogenation of acetophenone, achieving turnover frequencies of 800 h–1 at 50 °C and 25 atm of H2.
Organometallics ACS
Journal of Organometallic Chemistry
graduate work
Inorganic Chemistry
Catalysis Science & Technology
Journal of the American Chemical Society
graduate work
Organometallics ACS
Organometallics ACS
Organometallics ACS
ACS Catalysis
Dalton Transactions
doi: 10.1039/C4DT02799J.
Chemistry - A European Journal
Organometallics
Acta Crystallographica Section E
Chemical Communications RSC
Organometallics ACS
Dalton Transactions
Inorganic Chemistry
graduate work
Organometallics
Complexes of the type mer,trans-[Fe(P-N-P′)(CO)2Br]BF4 are known to be precatalysts for the asymmetric direct hydrogenation of ketones and imines. Employing related ligand scaffolds, we successfully generated and tested the series of three new precatalysts [Fe(PCy2CH2CH═NCH(R)CH2PPh2)(CO)2Br]BF4 with chirality derived from (S)-amino alcohols with phenyl, benzyl, and isopropyl substituents (R), yielding fairly active and selective systems. For the reduction of acetophenone to (S)-1-phenylethanol turnover frequencies up to 920 h–1 and up to 74% enantiomeric excess at 50 °C and 5–25 atm of H2 were obtained. We found, however, that placing these large groups R next to nitrogen was found to be deleterious to catalytic activity. Extending the scope of the ligand structure, we then developed a series of six P-N-P and five P-NH-P′ systems starting with o-diphenylphosphinobenzaldehyde and the phosphine-amines PPh2CHR1CHR2NH2 (R1 = H, Ph, CH2Ph, iPr with R2 = H or R1 = Me, Ph with R2 = Ph) as well as their corresponding [Fe(P-N-P′)(NCMe)3][BF4]2 and [Fe(P-NH-P′)(NCMe)3][BF4]2 complexes, which were not catalytically active. Finally, we made the new achiral iron complex mer,cis-Fe(PPh2(o-C6H4)CHNCH2CH2PPh2)(CO)Br2, which was active for the direct hydrogenation of acetophenone, achieving turnover frequencies of 800 h–1 at 50 °C and 25 atm of H2.
Organometallics ACS
Journal of Organometallic Chemistry
graduate work
Inorganic Chemistry
Catalysis Science & Technology
Journal of the American Chemical Society
graduate work
Organometallics ACS
Organometallics ACS
Organometallics ACS
ACS Catalysis
Dalton Transactions
doi: 10.1039/C4DT02799J.
Chemistry - A European Journal
Organometallics
Acta Crystallographica Section E
Journal of the American Chemical Society
Chemical Communications RSC
Organometallics ACS
Dalton Transactions
Inorganic Chemistry
graduate work
Organometallics
Complexes of the type mer,trans-[Fe(P-N-P′)(CO)2Br]BF4 are known to be precatalysts for the asymmetric direct hydrogenation of ketones and imines. Employing related ligand scaffolds, we successfully generated and tested the series of three new precatalysts [Fe(PCy2CH2CH═NCH(R)CH2PPh2)(CO)2Br]BF4 with chirality derived from (S)-amino alcohols with phenyl, benzyl, and isopropyl substituents (R), yielding fairly active and selective systems. For the reduction of acetophenone to (S)-1-phenylethanol turnover frequencies up to 920 h–1 and up to 74% enantiomeric excess at 50 °C and 5–25 atm of H2 were obtained. We found, however, that placing these large groups R next to nitrogen was found to be deleterious to catalytic activity. Extending the scope of the ligand structure, we then developed a series of six P-N-P and five P-NH-P′ systems starting with o-diphenylphosphinobenzaldehyde and the phosphine-amines PPh2CHR1CHR2NH2 (R1 = H, Ph, CH2Ph, iPr with R2 = H or R1 = Me, Ph with R2 = Ph) as well as their corresponding [Fe(P-N-P′)(NCMe)3][BF4]2 and [Fe(P-NH-P′)(NCMe)3][BF4]2 complexes, which were not catalytically active. Finally, we made the new achiral iron complex mer,cis-Fe(PPh2(o-C6H4)CHNCH2CH2PPh2)(CO)Br2, which was active for the direct hydrogenation of acetophenone, achieving turnover frequencies of 800 h–1 at 50 °C and 25 atm of H2.
Organometallics ACS
Journal of Organometallic Chemistry
graduate work
Inorganic Chemistry
Catalysis Science & Technology
Journal of the American Chemical Society
graduate work
Organometallics ACS
Organometallics ACS
Organometallics ACS
ACS Catalysis
Dalton Transactions
doi: 10.1039/C4DT02799J.
Chemistry - A European Journal
Organometallics
Acta Crystallographica Section E
Journal of the American Chemical Society
J. Am. Chem. Soc.
After their treatment with LiAlH4 and then alcohol, new iron dicarbonyl complexes mer-trans-[Fe(Br)(CO)2(P–CH═N–P′)][BF4] (where P–CH═N–P′ = R2PCH2CH═NCH2CH2PPh2 and R = Cy or iPr or P–CH═N–P′ = (S,S)- Cy2PCH2CH═NCH(Me)CH(Ph)PPh2) are catalysts for the hydrogenation of ketones in THF solvent with added KOtBu at 50 °C and 5 atm H2. Complexes with R = Ph are not active. With the enantiopure complex, alcohols are produced with an enantiomeric excess of up to 85% (S) at TOF up to 2000 h–1, TON of up to 5000, for a range of ketones. An activated imine is hydrogenated to the amine in 90% ee at a TOF 20 h–1and TON 99. This is a significant advance in asymmetric pressure hydrogenation using iron. The complexes are prepared in two steps: (1) a one-pot reaction of phosphonium dimers ([cyclo-(PR2CH2CH(OH)−)2][Br]2), KOtBu, FeBr2, and Ph2PCH2CH2NH2 (or (S,S)-Ph2PCH(Ph)CH(Me)NH2 for the enantiopure complex) in THF under a CO atmosphere to produce the complexes cis- and trans-[Fe(Br)2(CO)(P–CH═N–P′)]; (2) the reaction of these with AgBF4 under CO(g) to afford the dicarbonyl complexes in high yield (50–90%). NMR and DFT studies of the process of precatalyst activation show that the dicarbonyl complexes are converted first to hydride–aluminum hydride complexes where the imine of the P–CH═N–P′ ligand is reduced to an amide [P–CH2N–P′]− with aluminum hydrides still bound to the nitrogen. These hydride species react with alcohol to give monohydride amine iron compounds FeH(OR′)(CO)(P–CH2NH–P′), R′ = Me, CMe2Et as well as the iron(0) complex Fe(CO)2(P–CH2NH–P′) under certain conditions.