Awesome
no comment
University of Saskatchewan - Food Science
Associate Professor
Michael worked at University of Guelph as a Associate Professor
Assistant Professor
Michael worked at University of Saskatchewan as a Assistant Professor
Assistant Professor
Michael worked at Rutgers University as a Assistant Professor
PhD
Food Science
Associate Professor
Soft Matter
Elucidating the molecular structures, responsible for promoting self-assembly of low-molecular weight organogelators (LMOG) into supramolecular fibers, has been an extensive area of study. Although this has been a fruitful endeavor, this study illustrates that the chemical nature of the solvent and solvent-gelator interactions are equally important. The nanostructure, microstructure and supramolecular structures, of 12HSA molecules gels, are all influenced by the chemical nature of the solvent, which correlate to the hydrogen-bonding Hansen solubility parameter (∂h). Depending on the solvent employed, the polymorphic form, arrangement of the carboxylic acid dimers, domain size, fiber morphology, microstructure, thermal properties and visual appearance of the gel all differ. Solvents that have dh < 4.4 MPa1/2, result in a hexagonal polymorphic form, with an 001 hlk spacing greater than the extended bi-molecular length of 12HSA. This nanoscale arrangement results in translucent gels that contain fibrillar aggregates corresponding to a higher crystallinity compared to molecular gels formed in solvents that have a dh > 4.4 MPa1/2.
Soft Matter
Elucidating the molecular structures, responsible for promoting self-assembly of low-molecular weight organogelators (LMOG) into supramolecular fibers, has been an extensive area of study. Although this has been a fruitful endeavor, this study illustrates that the chemical nature of the solvent and solvent-gelator interactions are equally important. The nanostructure, microstructure and supramolecular structures, of 12HSA molecules gels, are all influenced by the chemical nature of the solvent, which correlate to the hydrogen-bonding Hansen solubility parameter (∂h). Depending on the solvent employed, the polymorphic form, arrangement of the carboxylic acid dimers, domain size, fiber morphology, microstructure, thermal properties and visual appearance of the gel all differ. Solvents that have dh < 4.4 MPa1/2, result in a hexagonal polymorphic form, with an 001 hlk spacing greater than the extended bi-molecular length of 12HSA. This nanoscale arrangement results in translucent gels that contain fibrillar aggregates corresponding to a higher crystallinity compared to molecular gels formed in solvents that have a dh > 4.4 MPa1/2.
Journal of Agricultural and Food Chemistry
The influence of several nonionic surfactants (Tween-20, Tween-40, Tween-60, Span-20, Span-60, or Span-80) and anionic surfactants (sodium lauryl sulfate, sodium stearoyl lactylate, and sodium stearyl fumarate) showed drastic differences in the rank order of lipase activity/lipid bioaccessibility. The biophysical composition of the oil and water interface has a clear impact on the bioaccessibility of fatty acids (FA) by altering the interactions of lipase at the oil/water interface. It was found that the bioaccessibility was positively correlated with the hydrophilic/lipophilic balance (HLB) of the surfactant and inversely correlated to the surfactant aliphatic chain length. Furthermore, the induction time in the jejunum increased as the HLB value increased and decreased with increasing aliphatic chain length. The rate of lipolysis slowed in the jejunum with increasing HLB and with increasing aliphatic chain length.
Journal of Agricultural and Food Chemistry
The influence of several nonionic surfactants (Tween-20, Tween-40, Tween-60, Span-20, Span-60, or Span-80) and anionic surfactants (sodium lauryl sulfate, sodium stearoyl lactylate, and sodium stearyl fumarate) showed drastic differences in the rank order of lipase activity/lipid bioaccessibility. The biophysical composition of the oil and water interface has a clear impact on the bioaccessibility of fatty acids (FA) by altering the interactions of lipase at the oil/water interface. It was found that the bioaccessibility was positively correlated with the hydrophilic/lipophilic balance (HLB) of the surfactant and inversely correlated to the surfactant aliphatic chain length. Furthermore, the induction time in the jejunum increased as the HLB value increased and decreased with increasing aliphatic chain length. The rate of lipolysis slowed in the jejunum with increasing HLB and with increasing aliphatic chain length.
Soft Matter
Elucidating the molecular structures, responsible for promoting self-assembly of low-molecular weight organogelators (LMOG) into supramolecular fibers, has been an extensive area of study. Although this has been a fruitful endeavor, this study illustrates that the chemical nature of the solvent and solvent-gelator interactions are equally important. The nanostructure, microstructure and supramolecular structures, of 12HSA molecules gels, are all influenced by the chemical nature of the solvent, which correlate to the hydrogen-bonding Hansen solubility parameter (∂h). Depending on the solvent employed, the polymorphic form, arrangement of the carboxylic acid dimers, domain size, fiber morphology, microstructure, thermal properties and visual appearance of the gel all differ. Solvents that have dh < 4.4 MPa1/2, result in a hexagonal polymorphic form, with an 001 hlk spacing greater than the extended bi-molecular length of 12HSA. This nanoscale arrangement results in translucent gels that contain fibrillar aggregates corresponding to a higher crystallinity compared to molecular gels formed in solvents that have a dh > 4.4 MPa1/2.
Journal of Agricultural and Food Chemistry
The influence of several nonionic surfactants (Tween-20, Tween-40, Tween-60, Span-20, Span-60, or Span-80) and anionic surfactants (sodium lauryl sulfate, sodium stearoyl lactylate, and sodium stearyl fumarate) showed drastic differences in the rank order of lipase activity/lipid bioaccessibility. The biophysical composition of the oil and water interface has a clear impact on the bioaccessibility of fatty acids (FA) by altering the interactions of lipase at the oil/water interface. It was found that the bioaccessibility was positively correlated with the hydrophilic/lipophilic balance (HLB) of the surfactant and inversely correlated to the surfactant aliphatic chain length. Furthermore, the induction time in the jejunum increased as the HLB value increased and decreased with increasing aliphatic chain length. The rate of lipolysis slowed in the jejunum with increasing HLB and with increasing aliphatic chain length.
Journal of Agricultural and Food Chemistry
The influence of several nonionic surfactants (Tween-20, Tween-40, Tween-60, Span-20, Span-60, or Span-80) and anionic surfactants (sodium lauryl sulfate, sodium stearoyl lactylate, and sodium stearyl fumarate) showed drastic differences in the rank order of lipase activity/lipid bioaccessibility. The biophysical composition of the oil and water interface has a clear impact on the bioaccessibility of fatty acids (FA) by altering the interactions of lipase at the oil/water interface. It was found that the bioaccessibility was positively correlated with the hydrophilic/lipophilic balance (HLB) of the surfactant and inversely correlated to the surfactant aliphatic chain length. Furthermore, the induction time in the jejunum increased as the HLB value increased and decreased with increasing aliphatic chain length. The rate of lipolysis slowed in the jejunum with increasing HLB and with increasing aliphatic chain length.
Biomacromolecules
The bioaccessibility of salicylic acid (SA) can be effectively modified by incorporating the pharmacological compound directly into polymers such as poly(anhydride-esters). After simulated digestion conditions, the bioaccessibility of SA was observed to be statistically different ( p < 0.0001) in each sample: 55.5 ± 2.0% for free SA, 31.2 ± 2.4% the SA-diglycolic acid polymer precursor (SADG), and 21.2 ± 3.1% for SADG-P (polymer).
Biomacromolecules
The bioaccessibility of salicylic acid (SA) can be effectively modified by incorporating the pharmacological compound directly into polymers such as poly(anhydride-esters). After simulated digestion conditions, the bioaccessibility of SA was observed to be statistically different ( p < 0.0001) in each sample: 55.5 ± 2.0% for free SA, 31.2 ± 2.4% the SA-diglycolic acid polymer precursor (SADG), and 21.2 ± 3.1% for SADG-P (polymer).
Soft Matter
Elucidating the molecular structures, responsible for promoting self-assembly of low-molecular weight organogelators (LMOG) into supramolecular fibers, has been an extensive area of study. Although this has been a fruitful endeavor, this study illustrates that the chemical nature of the solvent and solvent-gelator interactions are equally important. The nanostructure, microstructure and supramolecular structures, of 12HSA molecules gels, are all influenced by the chemical nature of the solvent, which correlate to the hydrogen-bonding Hansen solubility parameter (∂h). Depending on the solvent employed, the polymorphic form, arrangement of the carboxylic acid dimers, domain size, fiber morphology, microstructure, thermal properties and visual appearance of the gel all differ. Solvents that have dh < 4.4 MPa1/2, result in a hexagonal polymorphic form, with an 001 hlk spacing greater than the extended bi-molecular length of 12HSA. This nanoscale arrangement results in translucent gels that contain fibrillar aggregates corresponding to a higher crystallinity compared to molecular gels formed in solvents that have a dh > 4.4 MPa1/2.
Journal of Agricultural and Food Chemistry
The influence of several nonionic surfactants (Tween-20, Tween-40, Tween-60, Span-20, Span-60, or Span-80) and anionic surfactants (sodium lauryl sulfate, sodium stearoyl lactylate, and sodium stearyl fumarate) showed drastic differences in the rank order of lipase activity/lipid bioaccessibility. The biophysical composition of the oil and water interface has a clear impact on the bioaccessibility of fatty acids (FA) by altering the interactions of lipase at the oil/water interface. It was found that the bioaccessibility was positively correlated with the hydrophilic/lipophilic balance (HLB) of the surfactant and inversely correlated to the surfactant aliphatic chain length. Furthermore, the induction time in the jejunum increased as the HLB value increased and decreased with increasing aliphatic chain length. The rate of lipolysis slowed in the jejunum with increasing HLB and with increasing aliphatic chain length.
Journal of Agricultural and Food Chemistry
The influence of several nonionic surfactants (Tween-20, Tween-40, Tween-60, Span-20, Span-60, or Span-80) and anionic surfactants (sodium lauryl sulfate, sodium stearoyl lactylate, and sodium stearyl fumarate) showed drastic differences in the rank order of lipase activity/lipid bioaccessibility. The biophysical composition of the oil and water interface has a clear impact on the bioaccessibility of fatty acids (FA) by altering the interactions of lipase at the oil/water interface. It was found that the bioaccessibility was positively correlated with the hydrophilic/lipophilic balance (HLB) of the surfactant and inversely correlated to the surfactant aliphatic chain length. Furthermore, the induction time in the jejunum increased as the HLB value increased and decreased with increasing aliphatic chain length. The rate of lipolysis slowed in the jejunum with increasing HLB and with increasing aliphatic chain length.
Biomacromolecules
The bioaccessibility of salicylic acid (SA) can be effectively modified by incorporating the pharmacological compound directly into polymers such as poly(anhydride-esters). After simulated digestion conditions, the bioaccessibility of SA was observed to be statistically different ( p < 0.0001) in each sample: 55.5 ± 2.0% for free SA, 31.2 ± 2.4% the SA-diglycolic acid polymer precursor (SADG), and 21.2 ± 3.1% for SADG-P (polymer).
Biomacromolecules
The bioaccessibility of salicylic acid (SA) can be effectively modified by incorporating the pharmacological compound directly into polymers such as poly(anhydride-esters). After simulated digestion conditions, the bioaccessibility of SA was observed to be statistically different ( p < 0.0001) in each sample: 55.5 ± 2.0% for free SA, 31.2 ± 2.4% the SA-diglycolic acid polymer precursor (SADG), and 21.2 ± 3.1% for SADG-P (polymer).
Chemical Soceity Reviews
Chemical Soceity Reviews
Soft Matter
Elucidating the molecular structures, responsible for promoting self-assembly of low-molecular weight organogelators (LMOG) into supramolecular fibers, has been an extensive area of study. Although this has been a fruitful endeavor, this study illustrates that the chemical nature of the solvent and solvent-gelator interactions are equally important. The nanostructure, microstructure and supramolecular structures, of 12HSA molecules gels, are all influenced by the chemical nature of the solvent, which correlate to the hydrogen-bonding Hansen solubility parameter (∂h). Depending on the solvent employed, the polymorphic form, arrangement of the carboxylic acid dimers, domain size, fiber morphology, microstructure, thermal properties and visual appearance of the gel all differ. Solvents that have dh < 4.4 MPa1/2, result in a hexagonal polymorphic form, with an 001 hlk spacing greater than the extended bi-molecular length of 12HSA. This nanoscale arrangement results in translucent gels that contain fibrillar aggregates corresponding to a higher crystallinity compared to molecular gels formed in solvents that have a dh > 4.4 MPa1/2.
Journal of Agricultural and Food Chemistry
The influence of several nonionic surfactants (Tween-20, Tween-40, Tween-60, Span-20, Span-60, or Span-80) and anionic surfactants (sodium lauryl sulfate, sodium stearoyl lactylate, and sodium stearyl fumarate) showed drastic differences in the rank order of lipase activity/lipid bioaccessibility. The biophysical composition of the oil and water interface has a clear impact on the bioaccessibility of fatty acids (FA) by altering the interactions of lipase at the oil/water interface. It was found that the bioaccessibility was positively correlated with the hydrophilic/lipophilic balance (HLB) of the surfactant and inversely correlated to the surfactant aliphatic chain length. Furthermore, the induction time in the jejunum increased as the HLB value increased and decreased with increasing aliphatic chain length. The rate of lipolysis slowed in the jejunum with increasing HLB and with increasing aliphatic chain length.
Journal of Agricultural and Food Chemistry
The influence of several nonionic surfactants (Tween-20, Tween-40, Tween-60, Span-20, Span-60, or Span-80) and anionic surfactants (sodium lauryl sulfate, sodium stearoyl lactylate, and sodium stearyl fumarate) showed drastic differences in the rank order of lipase activity/lipid bioaccessibility. The biophysical composition of the oil and water interface has a clear impact on the bioaccessibility of fatty acids (FA) by altering the interactions of lipase at the oil/water interface. It was found that the bioaccessibility was positively correlated with the hydrophilic/lipophilic balance (HLB) of the surfactant and inversely correlated to the surfactant aliphatic chain length. Furthermore, the induction time in the jejunum increased as the HLB value increased and decreased with increasing aliphatic chain length. The rate of lipolysis slowed in the jejunum with increasing HLB and with increasing aliphatic chain length.
Biomacromolecules
The bioaccessibility of salicylic acid (SA) can be effectively modified by incorporating the pharmacological compound directly into polymers such as poly(anhydride-esters). After simulated digestion conditions, the bioaccessibility of SA was observed to be statistically different ( p < 0.0001) in each sample: 55.5 ± 2.0% for free SA, 31.2 ± 2.4% the SA-diglycolic acid polymer precursor (SADG), and 21.2 ± 3.1% for SADG-P (polymer).
Biomacromolecules
The bioaccessibility of salicylic acid (SA) can be effectively modified by incorporating the pharmacological compound directly into polymers such as poly(anhydride-esters). After simulated digestion conditions, the bioaccessibility of SA was observed to be statistically different ( p < 0.0001) in each sample: 55.5 ± 2.0% for free SA, 31.2 ± 2.4% the SA-diglycolic acid polymer precursor (SADG), and 21.2 ± 3.1% for SADG-P (polymer).
Chemical Soceity Reviews
Chemical Soceity Reviews
Food Biophysics
Soft Matter
Elucidating the molecular structures, responsible for promoting self-assembly of low-molecular weight organogelators (LMOG) into supramolecular fibers, has been an extensive area of study. Although this has been a fruitful endeavor, this study illustrates that the chemical nature of the solvent and solvent-gelator interactions are equally important. The nanostructure, microstructure and supramolecular structures, of 12HSA molecules gels, are all influenced by the chemical nature of the solvent, which correlate to the hydrogen-bonding Hansen solubility parameter (∂h). Depending on the solvent employed, the polymorphic form, arrangement of the carboxylic acid dimers, domain size, fiber morphology, microstructure, thermal properties and visual appearance of the gel all differ. Solvents that have dh < 4.4 MPa1/2, result in a hexagonal polymorphic form, with an 001 hlk spacing greater than the extended bi-molecular length of 12HSA. This nanoscale arrangement results in translucent gels that contain fibrillar aggregates corresponding to a higher crystallinity compared to molecular gels formed in solvents that have a dh > 4.4 MPa1/2.
Journal of Agricultural and Food Chemistry
The influence of several nonionic surfactants (Tween-20, Tween-40, Tween-60, Span-20, Span-60, or Span-80) and anionic surfactants (sodium lauryl sulfate, sodium stearoyl lactylate, and sodium stearyl fumarate) showed drastic differences in the rank order of lipase activity/lipid bioaccessibility. The biophysical composition of the oil and water interface has a clear impact on the bioaccessibility of fatty acids (FA) by altering the interactions of lipase at the oil/water interface. It was found that the bioaccessibility was positively correlated with the hydrophilic/lipophilic balance (HLB) of the surfactant and inversely correlated to the surfactant aliphatic chain length. Furthermore, the induction time in the jejunum increased as the HLB value increased and decreased with increasing aliphatic chain length. The rate of lipolysis slowed in the jejunum with increasing HLB and with increasing aliphatic chain length.
Journal of Agricultural and Food Chemistry
The influence of several nonionic surfactants (Tween-20, Tween-40, Tween-60, Span-20, Span-60, or Span-80) and anionic surfactants (sodium lauryl sulfate, sodium stearoyl lactylate, and sodium stearyl fumarate) showed drastic differences in the rank order of lipase activity/lipid bioaccessibility. The biophysical composition of the oil and water interface has a clear impact on the bioaccessibility of fatty acids (FA) by altering the interactions of lipase at the oil/water interface. It was found that the bioaccessibility was positively correlated with the hydrophilic/lipophilic balance (HLB) of the surfactant and inversely correlated to the surfactant aliphatic chain length. Furthermore, the induction time in the jejunum increased as the HLB value increased and decreased with increasing aliphatic chain length. The rate of lipolysis slowed in the jejunum with increasing HLB and with increasing aliphatic chain length.
Biomacromolecules
The bioaccessibility of salicylic acid (SA) can be effectively modified by incorporating the pharmacological compound directly into polymers such as poly(anhydride-esters). After simulated digestion conditions, the bioaccessibility of SA was observed to be statistically different ( p < 0.0001) in each sample: 55.5 ± 2.0% for free SA, 31.2 ± 2.4% the SA-diglycolic acid polymer precursor (SADG), and 21.2 ± 3.1% for SADG-P (polymer).
Biomacromolecules
The bioaccessibility of salicylic acid (SA) can be effectively modified by incorporating the pharmacological compound directly into polymers such as poly(anhydride-esters). After simulated digestion conditions, the bioaccessibility of SA was observed to be statistically different ( p < 0.0001) in each sample: 55.5 ± 2.0% for free SA, 31.2 ± 2.4% the SA-diglycolic acid polymer precursor (SADG), and 21.2 ± 3.1% for SADG-P (polymer).
Chemical Soceity Reviews
Chemical Soceity Reviews
Food Biophysics
Crystal Growth & Design
The following profiles may or may not be the same professor: