Century College - Chemistry
Chemistry Instructor
Amanda worked at Normandale Community College as a Chemistry Instructor
Intern
Developed and taught hands-on science activities to elementary school students.
Instructor
Interdisciplinary, writing-intensive freshman seminar on the topic of the environment. Team-taught with a graduate student in Psychology.
Chemistry Instructor
Instructor for majors-level Organic Chemistry I and II, including lab and discussion sections.
Assistant Professor of Chemistry
I taught a General, Organic and Biochemistry sequence designed for nursing majors, as well as a sophomore-level organic chemistry lab for chemistry majors and pre-professional students. I was also an advisor to nursing majors.
B.A.
Chemistry
Mathematics minor
Ph.D.
Chemistry
Inorganic and Biological Chemistry
Instructor
Interdisciplinary, writing-intensive freshman seminar on the topic of the environment. Team-taught with a graduate student in Psychology.
Journal of the American Chemical Society
The oxidation state of copper bound to methanobactin, a small siderophore-like molecule from the methanotroph Methylosinus trichosporium OB3b, was investigated. Purified methanobactin loaded with Cu(II) exhibits a weak EPR signal probably due to adventitious Cu(II). The EPR signal intensity increases significantly upon addition of the strong oxidant nitric acid. Features of the X-ray absorption near edge spectrum, including a 1s --> 4p transition at 8985 eV, further indicate the presence of Cu(I). EXAFS data were best fit using a multiple scattering model generated from previously reported crystallographic parameters. These results establish definitively that M. trichosporium OB3b methanobactin binds Cu(I) and suggest that methanobactin itself reduces Cu(II) to Cu(I).
Journal of the American Chemical Society
The oxidation state of copper bound to methanobactin, a small siderophore-like molecule from the methanotroph Methylosinus trichosporium OB3b, was investigated. Purified methanobactin loaded with Cu(II) exhibits a weak EPR signal probably due to adventitious Cu(II). The EPR signal intensity increases significantly upon addition of the strong oxidant nitric acid. Features of the X-ray absorption near edge spectrum, including a 1s --> 4p transition at 8985 eV, further indicate the presence of Cu(I). EXAFS data were best fit using a multiple scattering model generated from previously reported crystallographic parameters. These results establish definitively that M. trichosporium OB3b methanobactin binds Cu(I) and suggest that methanobactin itself reduces Cu(II) to Cu(I).
Journal of the American Chemical Society
Particulate methane monooxygenase (pMMO) is a membrane-bound metalloenzyme that oxidizes methane to methanol in methanotrophic bacteria. The nature of the pMMO active site and the overall metal content are controversial, with spectroscopic and crystallographic data suggesting the presence of a mononuclear copper center, a dinuclear copper center, a trinuclear center, and a diiron center or combinations thereof. Most studies have focused on pMMO from Methylococcus capsulatus (Bath). pMMO from a second organism, Methylosinus trichosporium OB3b, has been purified and characterized by spectroscopic and crystallographic methods. Purified M. trichosporium OB3b pMMO contains 2 copper ions per 100 kDa protomer. Electron paramagnetic resonance (EPR) spectroscopic parameters indicate that type 2 Cu(II) is present as two distinct species. Extended X-ray absorption fine structure (EXAFS) data are best fit with oxygen/nitrogen ligands and reveal a Cu−Cu interaction at 2.52 Å. Correspondingly, X-ray crystallography of M. trichosporium OB3b pMMO shows a dinuclear copper center, similar to that observed previously in the crystal structure of M. capsulatus (Bath) pMMO. There are, however, significant differences between the pMMO structures from the two organisms. A mononuclear copper center present in M. capsulatus (Bath) pMMO is absent in M. trichosporium OB3b pMMO, whereas a metal center occupied by zinc in the M. capsulatus (Bath) pMMO structure is occupied by copper in M. trichosporium OB3b pMMO. These findings extend previous work on pMMO from M. capsulatus (Bath) and provide new insight into the functional importance of the different metal centers.
Journal of the American Chemical Society
The oxidation state of copper bound to methanobactin, a small siderophore-like molecule from the methanotroph Methylosinus trichosporium OB3b, was investigated. Purified methanobactin loaded with Cu(II) exhibits a weak EPR signal probably due to adventitious Cu(II). The EPR signal intensity increases significantly upon addition of the strong oxidant nitric acid. Features of the X-ray absorption near edge spectrum, including a 1s --> 4p transition at 8985 eV, further indicate the presence of Cu(I). EXAFS data were best fit using a multiple scattering model generated from previously reported crystallographic parameters. These results establish definitively that M. trichosporium OB3b methanobactin binds Cu(I) and suggest that methanobactin itself reduces Cu(II) to Cu(I).
Journal of the American Chemical Society
Particulate methane monooxygenase (pMMO) is a membrane-bound metalloenzyme that oxidizes methane to methanol in methanotrophic bacteria. The nature of the pMMO active site and the overall metal content are controversial, with spectroscopic and crystallographic data suggesting the presence of a mononuclear copper center, a dinuclear copper center, a trinuclear center, and a diiron center or combinations thereof. Most studies have focused on pMMO from Methylococcus capsulatus (Bath). pMMO from a second organism, Methylosinus trichosporium OB3b, has been purified and characterized by spectroscopic and crystallographic methods. Purified M. trichosporium OB3b pMMO contains 2 copper ions per 100 kDa protomer. Electron paramagnetic resonance (EPR) spectroscopic parameters indicate that type 2 Cu(II) is present as two distinct species. Extended X-ray absorption fine structure (EXAFS) data are best fit with oxygen/nitrogen ligands and reveal a Cu−Cu interaction at 2.52 Å. Correspondingly, X-ray crystallography of M. trichosporium OB3b pMMO shows a dinuclear copper center, similar to that observed previously in the crystal structure of M. capsulatus (Bath) pMMO. There are, however, significant differences between the pMMO structures from the two organisms. A mononuclear copper center present in M. capsulatus (Bath) pMMO is absent in M. trichosporium OB3b pMMO, whereas a metal center occupied by zinc in the M. capsulatus (Bath) pMMO structure is occupied by copper in M. trichosporium OB3b pMMO. These findings extend previous work on pMMO from M. capsulatus (Bath) and provide new insight into the functional importance of the different metal centers.
Annual Review of Biochemistry
Methanotrophic bacteria oxidize methane to methanol in the first step of their metabolic pathway. Two forms of methane monooxygenase (MMO) enzymes catalyze this reaction: soluble MMO (sMMO) and membrane-bound or particulate MMO (pMMO). pMMO is expressed when copper is available, and its active site is believed to contain copper. Whereas sMMO is well characterized, most aspects of pMMO biochemistry remain unknown and somewhat controversial. This review emphasizes advances in the past two to three years related to pMMO and to copper uptake and copper-dependent regulation in methanotrophs. The pMMO metal centers have been characterized spectroscopically, and the first pMMO crystal structure has been determined. Significant effort has been devoted to improving in vitro pMMO activity. Proteins involved in sMMO regulation and additional copper-regulated proteins have been identified, and the Methylococcus capsulatus (Bath) genome has been sequenced. Finally, methanobactin (mb), a small copper chelator proposed to facilitate copper uptake, has been characterized.
The following profiles may or may not be the same professor: